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Congruences

This chapter introduces the basic properties of congruences modulo n, along
with the related notion of congruence classes modulo n. Other items dis-
cussed include the Chinese remainder theorem, Euler’s phi function, arith-
metic functions and Möbius inversion, and Fermat’s little theorem.

2.1 Definitions and basic properties

For positive integer n, and for a, b ∈ Z, we say that a is congruent to
b modulo n if n | (a − b), and we write a ≡ b (mod n). If n - (a − b),
then we write a 6≡ b (mod n). The relation a ≡ b (mod n) is called a
congruence relation, or simply, a congruence. The number n appearing
in such congruences is called the modulus of the congruence. This usage of
the “mod” notation as part of a congruence is not to be confused with the
“mod” operation introduced in §1.1.

A simple observation is that a ≡ b (mod n) if and only if there exists an
integer c such that a = b + cn. From this, and Theorem 1.4, the following
is immediate:

Theorem 2.1. Let n be a positive integer. For every integer a, there exists
a unique integer b such that a ≡ b (mod n) and 0 ≤ b < n, namely, b :=
a mod n.

If we view the modulus n as fixed, then the following theorem says that
the binary relation “· ≡ · (mod n)” is an equivalence relation on the set Z:

Theorem 2.2. Let n be a positive integer. For all a, b, c ∈ Z, we have:
(i) a ≡ a (mod n);
(ii) a ≡ b (mod n) implies b ≡ a (mod n);
(iii) a ≡ b (mod n) and b ≡ c (mod n) implies a ≡ c (mod n).
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14 Congruences

Proof. For (i), observe that n divides 0 = a − a. For (ii), observe that if n
divides a− b, then it also divides −(a− b) = b− a. For (iii), observe that if
n divides a− b and b− c, then it also divides (a− b) + (b− c) = a− c. 2

A key property of congruences is that they are “compatible” with integer
addition and multiplication, in the following sense:

Theorem 2.3. For all positive integers n, and all a, a′, b, b′ ∈ Z, if a ≡
a′ (mod n) and b ≡ b′ (mod n), then

a+ b ≡ a′ + b′ (mod n)

and

a · b ≡ a′ · b′ (mod n).

Proof. Suppose that a ≡ a′ (mod n) and b ≡ b′ (mod n). This means that
there exist integers c and d such that a′ = a+cn and b′ = b+dn. Therefore,

a′ + b′ = a+ b+ (c+ d)n,

which proves the first congruence of the theorem, and

a′b′ = (a+ cn)(b+ dn) = ab+ (ad+ bc+ cdn)n,

which proves the second congruence. 2

Theorems 2.2 and 2.3 allow one to work with congruence relations mod-
ulo n much as one would with ordinary equalities: one can add to, subtract
from, or multiply both sides of a congruence modulo n by the same integer;
also, if x is congruent to y modulo n, one may substitute y for x in any sim-
ple arithmetic expression (more precisely, any polynomial in x with integer
coefficients) appearing in a congruence modulo n.

Example 2.1. Observe that

3 · 5 ≡ 1 (mod 7). (2.1)

Using this fact, let us find the set of solutions z to the congruence

3z + 4 ≡ 6 (mod 7). (2.2)

Suppose that z is a solution to (2.2). Subtracting 4 from both sides of (2.2),
we see that

3z ≡ 2 (mod 7). (2.3)

Now, multiplying both sides of (2.3) by 5, and using (2.1), we obtain

z ≡ 1 · z ≡ (3 · 5) · z ≡ 2 · 5 ≡ 3 (mod 7).
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Thus, if z is a solution to (2.2), we must have z ≡ 3 (mod 7); conversely,
one can verify that if z ≡ 3 (mod 7), then (2.2) holds. We conclude that
the integers z that are solutions to (2.2) are precisely those integers that are
congruent to 3 modulo 7, which we can list as follows:

. . . ,−18,−11,−4, 3, 10, 17, 24, . . . 2

In the next section, we shall give a systematic treatment of the problem
of solving linear congruences, such as the one appearing in the previous
example.

Exercise 2.1. Let x, y, n ∈ Z with n > 0 and x ≡ y (mod n). Also, let
a0, a1, . . . , ak be integers. Show that

a0 + a1x+ · · ·+ akx
k ≡ a0 + a1y + · · ·+ aky

k (mod n).

Exercise 2.2. Let a, b, n, n′ ∈ Z with n > 0 and n′ | n. Show that if
a ≡ b (mod n), then a ≡ b (mod n′).

Exercise 2.3. Let a, b, n, n′ ∈ Z with n > 0, n′ > 0, and gcd(n, n′) = 1.
Show that if a ≡ b (mod n) and a ≡ b (mod n′), then a ≡ b (mod nn′).

Exercise 2.4. Let a, b, n ∈ Z such that n > 0 and a ≡ b (mod n). Show
that gcd(a, n) = gcd(b, n).

Exercise 2.5. Prove that for any prime p and integer x, if x2 ≡ 1 (mod p)
then x ≡ 1 (mod p) or x ≡ −1 (mod p).

Exercise 2.6. Let a be a positive integer whose base-10 representation is
a = (ak−1 · · · a1a0)10. Let b be the sum of the decimal digits of a; that is, let
b := a0 + a1 + · · · + ak−1. Show that a ≡ b (mod 9). From this, justify the
usual “rules of thumb” for determining divisibility by 9 and 3: a is divisible
by 9 (respectively, 3) if and only if the sum of the decimal digits of a is
divisible by 9 (respectively, 3).

Exercise 2.7. Show that there are 14 distinct, possible, yearly (Gregorian)
calendars, and show that all 14 calendars actually occur.

2.2 Solving linear congruences

For a positive integer n, and a ∈ Z, we say that a′ ∈ Z is a multiplicative
inverse of a modulo n if aa′ ≡ 1 (mod n).

Theorem 2.4. Let a, n ∈ Z with n > 0. Then a has a multiplicative inverse
modulo n if and only if a and n are relatively prime.
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Proof. This follows immediately from Theorem 1.6: a and n are relatively
prime if and only if there exist s, t ∈ Z such that as+ nt = 1, if and only if
there exists s ∈ Z such that as ≡ 1 (mod n). 2

Note that the existence of a multiplicative inverse of a modulo n depends
only on the value of a modulo n; that is, if b ≡ a (mod n), then a has an
inverse if and only if b does. Indeed, by Theorem 2.3, if b ≡ a (mod n), then
for any integer a′, aa′ ≡ 1 (mod n) if and only if ba′ ≡ 1 (mod n). (This
fact is also implied by Theorem 2.4 together with Exercise 2.4.)

We now prove a simple “cancellation law” for congruences:

Theorem 2.5. Let a, n, z, z′ ∈ Z with n > 0. If a is relatively prime to n,
then az ≡ az′ (mod n) if and only if z ≡ z′ (mod n). More generally, if
d := gcd(a, n), then az ≡ az′ (mod n) if and only if z ≡ z′ (mod n/d).

Proof. For the first statement, assume that gcd(a, n) = 1, and let a′ be
a multiplicative inverse of a modulo n. Then, az ≡ az′ (mod n) implies
a′az ≡ a′az′ (mod n), which implies z ≡ z′ (mod n), since a′a ≡ 1 (mod n).
Conversely, if z ≡ z′ (mod n), then trivially az ≡ az′ (mod n). That proves
the first statement.

For the second statement, let d = gcd(a, n). Simply from the definition
of congruences, one sees that in general, az ≡ az′ (mod n) holds if and only
if (a/d)z ≡ (a/d)z′ (mod n/d). Moreover, since a/d and n/d are relatively
prime (see Exercise 1.9), the first statement of the theorem implies that
(a/d)z ≡ (a/d)z′ (mod n/d) holds if and only if z ≡ z′ (mod n/d). That
proves the second statement. 2

Theorem 2.5 implies that multiplicative inverses modulo n are uniquely
determined modulo n; indeed, if a is relatively prime to n, and if aa′ ≡ 1 ≡
aa′′ (mod n), then we may cancel a from the left- and right-hand sides of
this congruence, obtaining a′ ≡ a′′ (mod n).

Example 2.2. Observe that

5 · 2 ≡ 5 · (−4) (mod 6). (2.4)

Theorem 2.5 tells us that since gcd(5, 6) = 1, we may cancel the common
factor of 5 from both sides of (2.4), obtaining 2 ≡ −4 (mod 6), which one
can also verify directly.

Next observe that

3 · 5 ≡ 3 · 3 (mod 6). (2.5)

We cannot simply cancel the common factor of 3 from both sides of (2.5);
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indeed, 5 6≡ 3 (mod 6). However, gcd(3, 6) = 3, and as Theorem 2.5 guaran-
tees, we do indeed have 5 ≡ 3 (mod 2). 2

Next, we consider the problem of determining the solutions z to congru-
ences of the form az + c ≡ b (mod n), for given integers a, b, c, n. Since
we may both add and subtract c from both sides of a congruence modulo
n, it is clear that z is a solution to the above congruence if and only if
az ≡ b− c (mod n). Therefore, it suffices to consider the problem of deter-
mining the solutions z to congruences of the form az ≡ b (mod n), for given
integers a, b, n.

Theorem 2.6. Let a, b, n ∈ Z with n > 0. If a is relatively prime to n, then
the congruence az ≡ b (mod n) has a solution z; moreover, any integer z′ is
a solution if and only if z ≡ z′ (mod n).

Proof. The integer z := ba′, where a′ is a multiplicative inverse of a modulo
n, is clearly a solution. For any integer z′, we have az′ ≡ b (mod n) if
and only if az′ ≡ az (mod n), which by Theorem 2.5 holds if and only if
z ≡ z′ (mod n). 2

Suppose that a, b, n ∈ Z with n > 0, a 6= 0, and gcd(a, n) = 1. This
theorem says that there exists a unique integer z satisfying

az ≡ b (mod n) and 0 ≤ z < n.

Setting s := b/a ∈ Q, we may generalize the “mod” operation, defining
s mod n to be this value z. As the reader may easily verify, this definition
of s mod n does not depend on the particular choice of fraction used to
represent the rational number s. With this notation, we can simply write
a−1 mod n to denote the unique multiplicative inverse of a modulo n that
lies in the interval 0, . . . , n− 1.

Theorem 2.6 may be generalized as follows:

Theorem 2.7. Let a, b, n ∈ Z with n > 0, and let d := gcd(a, n). If d | b,
then the congruence az ≡ b (mod n) has a solution z, and any integer z′ is
also a solution if and only if z ≡ z′ (mod n/d). If d - b, then the congruence
az ≡ b (mod n) has no solution z.

Proof. For the first statement, suppose that d | b. In this case, by Theo-
rem 2.5, we have az ≡ b (mod n) if and only if (a/d)z ≡ (b/d) (mod n/d),
and so the statement follows immediately from Theorem 2.6, and the fact
that a/d and n/d are relatively prime.

For the second statement, we show that if az ≡ b (mod n) for some
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integer z, then d must divide b. To this end, assume that az ≡ b (mod n)
for some integer z. Then since d | n, we have az ≡ b (mod d). However,
az ≡ 0 (mod d), since d | a, and hence b ≡ 0 (mod d); that is, d | b. 2

Example 2.3. The following table illustrates what the above theorem says
for n = 15 and a = 1, 2, 3, 4, 5, 6.

z 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
2z mod 15 0 2 4 6 8 10 12 14 1 3 5 7 9 11 13
3z mod 15 0 3 6 9 12 0 3 6 9 12 0 3 6 9 12
4z mod 15 0 4 8 12 1 5 9 13 2 6 10 14 3 7 11
5z mod 15 0 5 10 0 5 10 0 5 10 0 5 10 0 5 10
6z mod 15 0 6 12 3 9 0 6 12 3 9 0 6 12 3 9

In the second row, we are looking at the values 2z mod 15, and we see
that this row is just a permutation of the first row. So for every b, there
exists a unique z such that 2z ≡ b (mod 15). We could have inferred this
fact from the theorem, since gcd(2, 15) = 1.

In the third row, the only numbers hit are the multiples of 3, which
follows from the theorem and the fact that gcd(3, 15) = 3. Also note that
the pattern in this row repeats every five columns; that is also implied by
the theorem; that is, 3z ≡ 3z′ (mod 15) if and only if z ≡ z′ (mod 5).

In the fourth row, we again see a permutation of the first row, which
follows from the theorem and the fact that gcd(4, 15) = 1.

In the fifth row, the only numbers hit are the multiples of 5, which follows
from the theorem and the fact that gcd(5, 15) = 5. Also note that the
pattern in this row repeats every three columns; that is also implied by the
theorem; that is, 5z ≡ 5z′ (mod 15) if and only if z ≡ z′ (mod 3).

In the sixth row, since gcd(6, 15) = 3, we see a permutation of the third
row. The pattern repeats after five columns, although the pattern is a
permutation of the pattern in the third row. 2

Next, we consider systems of linear congruences with respect to moduli
that are relatively prime in pairs. The result we state here is known as the
Chinese remainder theorem, and is extremely useful in a number of contexts.

Theorem 2.8 (Chinese remainder theorem). Let n1, . . . , nk be pairwise
relatively prime, positive integers, and let a1, . . . , ak be arbitrary integers.
Then there exists an integer z such that

z ≡ ai (mod ni) (i = 1, . . . , k).
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Moreover, any other integer z′ is also a solution of these congruences if and
only if z ≡ z′ (mod n), where n :=

∏k
i=1 ni.

Proof. Let n :=
∏k

i=1 ni, as in the statement of the theorem. Let us also
define

n′i := n/ni (i = 1, . . . , k).

From the fact that n1, . . . , nk are pairwise relatively prime, it is clear that
gcd(ni, n

′
i) = 1 for i = 1, . . . , k. Therefore, let

mi := (n′i)
−1 mod ni and wi := n′imi (i = 1, . . . , k).

By construction, one sees that for i = 1, . . . , k, we have

wi ≡ 1 (mod ni)

and

wi ≡ 0 (mod nj) for j = 1, . . . , k with j 6= i.

That is to say, for i, j = 1, . . . , k, we have wi ≡ δij (mod nj), where

δij :=
{

1 if i = j,
0 if i 6= j.

Now define

z :=
k∑

i=1

wiai.

One then sees that

z ≡
k∑

i=1

wiai ≡
k∑

i=1

δijai ≡ aj (mod nj) for j = 1, . . . , k.

Therefore, this z solves the given system of congruences.
Moreover, if z′ ≡ z (mod n), then since ni | n for i = 1, . . . , k, we see that

z′ ≡ z ≡ ai (mod ni) for i = 1, . . . , k, and so z′ also solves the system of
congruences.

Finally, if z′ solves the system of congruences, then z′ ≡ z (mod ni)
for i = 1, . . . , k. That is, ni | (z′ − z) for i = 1, . . . , k. Since n1, . . . , nk

are pairwise relatively prime, this implies that n | (z′ − z), or equivalently,
z′ ≡ z (mod n). 2

Example 2.4. The following table illustrates what the above theorem says
for n1 = 3 and n2 = 5.
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z 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
z mod 3 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2
z mod 5 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

We see that as z ranges from 0 to 14, the pairs (z mod 3, z mod 5) range
over all pairs (a1, a2) with a1 ∈ {0, 1, 2} and a2 ∈ {0, . . . , 4}, with every pair
being hit exactly once. 2

Exercise 2.8. Let a1, . . . , ak, n, b be integers with n > 0, and let d :=
gcd(a1, . . . , ak, n). Show that the congruence

a1z1 + · · ·+ akzk ≡ b (mod n)

has a solution z1, . . . , zk if and only if d | b.

Exercise 2.9. Find an integer z such that z ≡ −1 (mod 100), z ≡
1 (mod 33), and z ≡ 2 (mod 7).

Exercise 2.10. If you want to show that you are a real nerd, here is an
age-guessing game you might play at a party. First, prepare 2 cards as
follows:

1 4 7 10 · · · 94 97
2 5 8 11 · · · 95 98

and 4 cards as follows:

1 6 11 16 · · · 91 96
2 7 12 17 · · · 92 97
3 8 13 18 · · · 93 98
4 9 14 19 · · · 94 99

At the party, ask a person to tell you if their age is odd or even, and then
ask them to tell you on which of the six cards their age appears. Show how
to use this information (and a little common sense) to determine their age.

2.3 Residue classes

As we already observed in Theorem 2.2, for any fixed positive integer n, the
binary relation “· ≡ · (mod n)” is an equivalence relation on the set Z. As
such, this relation partitions the set Z into equivalence classes. We denote
the equivalence class containing the integer a by [a]n, or when n is clear from
context, we may simply write [a]. Historically, these equivalence classes are
called residue classes modulo n, and we shall adopt this terminology here
as well.
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It is easy to see from the definitions that

[a]n = a+ nZ := {a+ nz : z ∈ Z}.

Note that a given residue class modulo n has many different “names”; for
example, the residue class [1]n is the same as the residue class [1 + n]n. For
any integer a in a residue class, we call a a representative of that class.

The following is simply a restatement of Theorem 2.1:

Theorem 2.9. For a positive integer n, there are precisely n distinct residue
classes modulo n, namely, [a]n for a = 0, . . . , n− 1.

Fix a positive integer n. Let us define Zn as the set of residue classes
modulo n. We can “equip” Zn with binary operations defining addition and
multiplication in a natural way as follows: for a, b ∈ Z, we define

[a]n + [b]n := [a+ b]n,

and we define

[a]n · [b]n := [a · b]n.

Of course, one has to check this definition is unambiguous, in the sense
that the sum or product of two residue classes should not depend on which
particular representatives of the classes are chosen in the above definitions.
More precisely, one must check that if [a]n = [a′]n and [b]n = [b′]n, then
[a op b]n = [a′ op b′]n, for op ∈ {+, ·}. However, this property follows
immediately from Theorem 2.3.

It is also convenient to define a negation operation on Zn, defining

−[a]n := [−1]n · [a]n = [−a]n.

Having defined addition and negation operations on Zn, we naturally define
a subtraction operation on Zn as follows: for a, b ∈ Z,

[a]n − [b]n := [a]n + (−[b]n) = [a− b]n.

Example 2.5. Consider the residue classes modulo 6. These are as follows:

[0] = {. . . ,−12,−6, 0, 6, 12, . . .}
[1] = {. . . ,−11,−5, 1, 7, 13, . . .}
[2] = {. . . ,−10,−4, 2, 8, 14, . . .}
[3] = {. . . ,−9,−3, 3, 9, 15, . . .}
[4] = {. . . ,−8,−2, 4, 10, 16, . . .}
[5] = {. . . ,−7,−1, 5, 11, 17, . . .}
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Let us write down the addition and multiplication tables for Z6. The addi-
tion table looks like this:

+ [0] [1] [2] [3] [4] [5]
[0] [0] [1] [2] [3] [4] [5]
[1] [1] [2] [3] [4] [5] [0]
[2] [2] [3] [4] [5] [0] [1]
[3] [3] [4] [5] [0] [1] [2]
[4] [4] [5] [0] [1] [2] [3]
[5] [5] [0] [1] [2] [3] [4]

The multiplication table looks like this:

· [0] [1] [2] [3] [4] [5]
[0] [0] [0] [0] [0] [0] [0]
[1] [0] [1] [2] [3] [4] [5]
[2] [0] [2] [4] [0] [2] [4]
[3] [0] [3] [0] [3] [0] [3]
[4] [0] [4] [2] [0] [4] [2]
[5] [0] [5] [4] [3] [2] [1]

2

These operations on Zn yield a very natural algebraic structure whose
salient properties are as follows:

Theorem 2.10. Let n be a positive integer, and consider the set Zn of
residue classes modulo n with addition and multiplication of residue classes
as defined above. For all α, β, γ ∈ Zn, we have

(i) α+ β = β + α (addition is commutative),

(ii) (α+ β) + γ = α+ (β + γ) (addition is associative),

(iii) α+ [0]n = α (existence of additive identity),

(iv) α− α = [0]n (existence of additive inverses),

(v) α · β = β · α (multiplication is commutative),

(vi) (α · β) · γ = α · (β · γ) (multiplication is associative),

(vii) α · (β + γ) = α · β + α · γ (multiplication distributes over addition)

(viii) α · [1]n = α (existence of multiplicative identity).

Proof. All of these properties follow easily from the corresponding properties
for the integers, together with the definitions of addition, subtraction, and
multiplication of residue classes. For example, for (i), we have

[a]n + [b]n = [a+ b]n = [b+ a]n = [b]n + [a]n,
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where the first and third equalities follow from the definition of addition
of residue classes, and the second equality follows from the commutativity
property of integer addition. The reader may verify the other properties
using similar arguments. 2

An algebraic structure satisfying the conditions in the above theorem is
known more generally as a “commutative ring with unity,” a notion that we
will discuss in Chapter 9.

Note that while all elements of Zn have an additive inverses, not all el-
ements of Zn have a multiplicative inverse. Indeed, for a ∈ Z, the residue
class [a]n ∈ Zn has a multiplicative inverse in Zn if and only if a has a
multiplicative inverse modulo n, which by Theorem 2.4, holds if and only
if gcd(a, n) = 1. Since multiplicative inverses modulo n are uniquely deter-
mined modulo n (see discussion following Theorem 2.5), it follows that if
α ∈ Zn has a multiplicative inverse in Zn, then this inverse is unique, and
we may denote it by α−1.

One denotes by Z∗n the set of all residue classes that have a multiplicative
inverse. It is easy to see that Z∗n is closed under multiplication; indeed,
if α, β ∈ Z∗n, then (αβ)−1 = α−1β−1. Also, note that for α ∈ Z∗n and
β, β′ ∈ Zn, if αβ = αβ′, we may effectively cancel α from both sides of this
equation, obtaining β = β′—this is just a restatement of the first part of
Theorem 2.5 in the language of residue classes.

For α ∈ Zn and positive integer k, the expression αk denotes the product
α · α · · · · · α, where there are k terms in the product. One may extend
this definition to k = 0, defining α0 to be the multiplicative identity [1]n.
If α has a multiplicative inverse, then it is easy to see that for any integer
k ≥ 0, αk has a multiplicative inverse as well, namely, (α−1)k, which we may
naturally write as α−k.

In general, one has a choice between working with congruences modulo
n, or with the algebraic structure Zn; ultimately, the choice is one of taste
and convenience, and it depends on what one prefers to treat as “first class
objects”: integers and congruence relations, or elements of Zn.

An alternative, and somewhat more concrete, approach to defining Zn is
to simply define it to consist of the n “symbols” 0, 1, . . . , n− 1, with addition
and multiplication defined as

a+ b := (a+ b) mod n, a · b := (a · b) mod n,

for a, b = 0, . . . , n−1. Such a definition is equivalent to the one we have given
here, with the symbol a corresponding to the residue class [a]n. One should
keep this alternative characterization of Zn in mind; however, we prefer the
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characterization in terms of residue classes, as it is mathematically more
elegant, and is usually more convenient to work with.

Exercise 2.11. Show that for any positive integer n, and any integer k,
the residue classes [k + a]n, for a = 0, . . . , n − 1, are distinct and therefore
include all residue classes modulo n.

Exercise 2.12. Verify the following statements for Zn:

(a) There is only one element of Zn that acts as an additive identity; that
is, if α ∈ Zn satisfies α+ β = β for all β ∈ Zn, then α = [0]n.

(b) Additive inverses in Zn are unique; that is, for all α ∈ Zn, if α+ β =
[0]n, then β = −α.

(c) If α ∈ Z∗n and γ, δ ∈ Zn, then there exists a unique β ∈ Zn such that
αβ + γ = δ.

Exercise 2.13. Verify the usual “rules of exponent arithmetic” for Zn. That
is, show that for α ∈ Zn, and non-negative integers k1, k2, we have

(αk1)k2 = αk1k2 and αk1αk2 = αk1+k2 .

Moreover, show that if α ∈ Z∗n, then these identities hold for all integers
k1, k2.

2.4 Euler’s phi function

Euler’s phi function φ(n) is defined for positive integer n as the number
of elements of Z∗n. Equivalently, φ(n) is equal to the number of integers
between 0 and n− 1 that are relatively prime to n. For example, φ(1) = 1,
φ(2) = 1, φ(3) = 2, and φ(4) = 2.

A fact that is sometimes useful is the following:

Theorem 2.11. For any positive integer n, we have∑
d|n

φ(d) = n,

where the sum is over all positive divisors d of n.

Proof. Consider the list of n rational numbers 0/n, 1/n, . . . , (n− 1)/n. For
any divisor d of n and for any integer a with 0 ≤ a < d and gcd(a, d) = 1, the
fraction a/d appears in the list exactly once, and moreover, every number in
the sequence, when expressed as a fraction in lowest terms, is of this form.
2
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Using the Chinese remainder theorem, it is easy to get a nice formula
for φ(n) in terms for the prime factorization of n, as we establish in the
following sequence of theorems.

Theorem 2.12. For positive integers n,m with gcd(n,m) = 1, we have

φ(nm) = φ(n)φ(m).

Proof. Consider the map

ρ : Znm → Zn × Zm

[a]nm 7→ ([a]n, [a]m).

First, note that the definition of ρ is unambiguous, since a ≡ a′ (mod nm)
implies a ≡ a′ (mod n) and a ≡ a′ (mod m). Second, according to the Chi-
nese remainder theorem, the map ρ is one-to-one and onto. Moreover, it is
easy to see that gcd(a, nm) = 1 if and only if gcd(a, n) = 1 and gcd(a,m) = 1
(verify). Therefore, the map ρ carries Z∗nm injectively onto Z∗n×Z∗m. In par-
ticular, |Z∗nm| = |Z∗n × Z∗m|. 2

Theorem 2.13. For a prime p and a positive integer e, we have φ(pe) =
pe−1(p− 1).

Proof. The multiples of p among 0, 1, . . . , pe − 1 are

0 · p, 1 · p, . . . , (pe−1 − 1) · p,

of which there are precisely pe−1. Thus, φ(pe) = pe − pe−1 = pe−1(p− 1). 2

As an immediate consequence of the above two theorems, we have:

Theorem 2.14. If n = pe1
1 · · · per

r is the factorization of n into primes, then

φ(n) =
r∏

i=1

pei−1
i (pi − 1) = n

r∏
i=1

(1− 1/pi).

Exercise 2.14. Show that φ(nm) = gcd(n,m) · φ(lcm(n,m)).

2.5 Fermat’s little theorem

Let n be a positive integer, and let a ∈ Z with gcd(a, n) = 1. Consider the
sequence of powers of α := [a]n ∈ Z∗n:

[1]n = α0, α1, α2, . . . .
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Since each such power is an element of Z∗n, and since Z∗n is a finite set, this
sequence of powers must start to repeat at some point; that is, there must
be a positive integer k such that αk = αi for some i = 0, . . . , k − 1. Let
us assume that k is chosen to be the smallest such positive integer. We
claim that i = 0, or equivalently, αk = [1]n. To see this, suppose by way of
contradiction that αk = αi, for some i = 1, . . . , k − 1. Then we can cancel
α from both sides of the equation αk = αi, obtaining αk−1 = αi−1, and this
contradicts the minimality of k.

From the above discussion, we see that the first k powers of α, that is,
[1]n = α0, α1, . . . , αk−1, are distinct, and subsequent powers of α simply
repeat this pattern. More generally, we may consider both positive and
negative powers of α—it is easy to see (verify) that for all i, j ∈ Z, we have
αi = αj if and only if i ≡ j (mod k). In particular, we see that for any
integer i, we have αi = [1]n if and only if k divides i.

This value k is called the multiplicative order of α or the multiplica-
tive order of a modulo n. It can be characterized as the smallest positive
integer k such that

ak ≡ 1 (mod n).

Example 2.6. Let n = 7. For each value a = 1, . . . , 6, we can compute
successive powers of a modulo n to find its multiplicative order modulo n.

i 1 2 3 4 5 6
1i mod 7 1 1 1 1 1 1
2i mod 7 2 4 1 2 4 1
3i mod 7 3 2 6 4 5 1
4i mod 7 4 2 1 4 2 1
5i mod 7 5 4 6 2 3 1
6i mod 7 6 1 6 1 6 1

So we conclude that modulo 7: 1 has order 1; 6 has order 2; 2 and 4 have
order 3; and 3 and 5 have order 6. 2

Theorem 2.15 (Euler’s Theorem). For any positive integer n, and any
integer a relatively prime to n, we have aφ(n) ≡ 1 (mod n). In particular,
the multiplicative order of a modulo n divides φ(n).

Proof. Let α := [a]n ∈ Z∗n. Consider the map f : Z∗n → Z∗n that sends β ∈ Z∗n
to αβ. Observe that f is injective, since if αβ = αβ′, we may cancel α from
both sides of this equation, obtaining β = β′. Since f maps Z∗n injectively
into itself, and since Z∗n is a finite set, it must be the case that f is surjective
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as well. Thus, as β ranges over the set Z∗n, so does αβ, and we have∏
β∈Z∗n

β =
∏

β∈Z∗n

(αβ) = αφ(n)

( ∏
β∈Z∗n

β

)
. (2.6)

Canceling the common factor
∏

β∈Z∗n β ∈ Z∗n from the left- and right-hand
side of (2.6), we obtain

αφ(n) = [1]n.

That proves the first statement of the theorem. The second follows from
the observation made above that αi = [1]n if and only if the multiplicative
order of α divides i. 2

As a consequence of this, we obtain:

Theorem 2.16 (Fermat’s little theorem). For any prime p, and any
integer a 6≡ 0 (mod p), we have ap−1 ≡ 1 (mod p). Moreover, for any
integer a, we have ap ≡ a (mod p).

Proof. The first statement follows from Theorem 2.15, and the fact that
φ(p) = p − 1. The second statement is clearly true if a ≡ 0 (mod p),
and if a 6≡ 0 (mod p), we simply multiply both sides of the congruence
ap−1 ≡ 1 (mod p) by a. 2

For a positive integer n, we say that a ∈ Z with gcd(a, n) = 1 is a
primitive root modulo n if the multiplicative order of a modulo n is
equal to φ(n). If this is the case, then for α := [a]n, the powers αi range
over all elements of Z∗n as i ranges over the interval 0, . . . , φ(n)− 1. Not all
positive integers have primitive roots — we will see in §10.2 that the only
positive integers n for which there exists a primitive root modulo n are

n = 1, 2, 4, pe, 2pe,

where p is an odd prime and e is a positive integer.

Exercise 2.15. Find an integer whose multiplicative order modulo 101 is
100.

Exercise 2.16. Suppose α ∈ Z∗n has multiplicative order k. Show that for
any m ∈ Z, the multiplicative order of αm is k/ gcd(m, k).

Exercise 2.17. Suppose α ∈ Z∗n has multiplicative order k, β ∈ Z∗n has
multiplicative order `, and gcd(k, `) = 1. Show that αβ has multiplicative
order k`. Hint: use the previous exercise.
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Exercise 2.18. Prove that for any prime p, we have

(p− 1)! ≡ −1 (mod p).

Hint: using the result of Exercise 2.5, we know that the only elements of Z∗p
that act as their own multiplicative inverse are [±1]n; rearrange the terms
in the product

∏
β∈Z∗p β so that except for [±1]n, the terms are arranged in

pairs, where each pair consists of some β ∈ Z∗p and its multiplicative inverse.

2.6 Arithmetic functions and Möbius inversion

A function, such as Euler’s function φ, from the positive integers into the
reals is sometimes called an arithmetic function (actually, one usually
considers complex-valued functions as well, but we shall not do so here).
An arithmetic function f is called multiplicative if f(1) = 1 and for all
positive integers n,m with gcd(n,m) = 1, we have f(nm) = f(n)f(m).
Theorem 2.12 simply says that φ is multiplicative.

In this section, we develop some of the theory of arithmetic functions that
is pertinent to number theory; however, the results in this section will play
only a very minor role in the remainder of the text.

We begin with a simple observation, which the reader may easily verify:

if f is a multiplicative function, and if n = pe1
1 · · · per

r is the
prime factorization of n, then

f(n) = f(pe1
1 ) · · · f(per

r ).

Next, we define a binary operation on arithmetic functions that has a
number of interesting properties and applications. Let f and g be arith-
metic functions. The Dirichlet product of f and g, denoted f ? g, is the
arithmetic function whose value at n is defined by the formula

(f ? g)(n) :=
∑
d|n

f(d)g(n/d),

the sum being over all positive divisors d of n. Another, more symmetric,
way to write this is

(f ? g)(n) =
∑

n=d1d2

f(d1)g(d2),

the sum being over all pairs (d1, d2) of positive integers with d1d2 = n. The
Dirichlet product is clearly commutative (i.e., f ?g = g?f), and is associative
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as well, which one can see by checking that

(f ? (g ? h))(n) =
∑

n=d1d2d3

f(d1)g(d2)h(d3) = ((f ? g) ? h)(n),

the sum being over all triples (d1, d2, d3) of positive integers with d1d2d3 = n.
We now introduce three special arithmetic functions: I, J , and µ. The

function I(n) is defined to be 1 when n = 1 and 0 when n > 1. The function
J(n) is defined to be 1 for all n.

The Möbius function µ is defined for positive integers n as follows:

µ(n) :=
{

0 if n is divisible by a square other than 1;
(−1)r if n is the product of r ≥ 0 distinct primes.

Thus, if n = pe1
1 · · · per

r is the prime factorization of n, then µ(n) = 0 if ei > 1
for some i, and otherwise, µ(n) = (−1)r. Here are some examples:

µ(1) = 1, µ(2) = −1, µ(3) = −1, µ(4) = 0, µ(5) = −1, µ(6) = 1.

It is easy to see (verify) that for any arithmetic function f , we have

I ? f = f and (J ? f)(n) =
∑
d|n

f(d).

Also, the functions I, J , and µ are multiplicative (verify). A useful property
of the Möbius function is the following:

Theorem 2.17. For any multiplicative function f , if n = pe1
1 · · · per

r is the
prime factorization of n, we have∑

d|n

µ(d)f(d) = (1− f(p1)) · · · (1− f(pr)). (2.7)

In case r = 0 (i.e., n = 1), the product on the right-hand side of (2.7) is
interpreted (as usual) as 1.

Proof. The non-zero terms in the sum on the left-hand side of (2.7) are those
corresponding to divisors d of the form pi1 · · · pi` , where pi1 , . . . , pi` are dis-
tinct; the value contributed to the sum by such a term is (−1)`f(pi1 · · · pi`) =
(−1)`f(pi1) · · · f(pi`). These are the same as the terms in the expansion of
the product on the right-hand side of (2.7). 2

For example, suppose f(d) = 1/d in the above theorem, and let n =
pe1

1 · · · per
r be the prime factorization of n. Then we obtain:∑

d|n

µ(d)/d = (1− 1/p1) · · · (1− 1/pr). (2.8)
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As another example, suppose f = J . Then we obtain

(µ ? J)(n) =
∑
d|n

µ(d) =
r∏

i=1

(1− 1),

which is 1 if n = 1, and is zero if n > 1. Thus, we have

µ ? J = I. (2.9)

Theorem 2.18 (Möbius inversion formula). Let f and F be arithmetic
functions. Then we have F = J ? f if and only if f = µ ? F .

Proof. If F = J ? f , then

µ ? F = µ ? (J ? f) = (µ ? J) ? f = I ? f = f,

and conversely, if f = µ ? F , then

J ? f = J ? (µ ? F ) = (J ? µ) ? F = I ? F = F. 2

The Möbius inversion formula says this:

F (n) =
∑
d|n

f(d) for all positive integers n

if and only if

f(n) =
∑
d|n

µ(d)F (n/d) for all positive integers n.

As an application of the Möbius inversion formula, we can get a different
proof of Theorem 2.14, based on Theorem 2.11. Let F (n) := n and f(n) :=
φ(n). Theorem 2.11 says that F = J ? f . Applying Möbius inversion to this
yields f = µ ? F , and using (2.8), we obtain

φ(n) =
∑
d|n

µ(d)n/d = n
∑
d|n

µ(d)/d

= n(1− 1/p1) · · · (1− 1/pr).

Of course, one could turn the above argument around, using Möbius in-
version and (2.8) to derive Theorem 2.11 from Theorem 2.14.

Exercise 2.19. In our definition of a multiplicative function f , we made
the requirement that f(1) = 1. Show that if we dropped this requirement,
the only other function that would satisfy the definition would be the zero
function (i.e., the function that is everywhere zero).



2.6 Arithmetic functions and Möbius inversion 31

Exercise 2.20. Let f be a polynomial with integer coefficients, and for
positive integer n define ωf (n) to be the number of integers z ∈ {0, . . . , n−1}
such that f(z) ≡ 0 (mod n). Show that ωf is multiplicative.

Exercise 2.21. Show that if f and g are multiplicative, then so is f ? g.

Exercise 2.22. Define τ(n) to be the number of positive divisors of n.

(a) Show that τ is a multiplicative function.

(b) Show that

τ(n) = (e1 + 1) · · · (er + 1),

where n = pe1
1 · · · per

r is the prime factorization of n.

(c) Show that ∑
d|n

µ(d)τ(n/d) = 1.

(d) Show that ∑
d|n

µ(d)τ(d) = (−1)r,

where n = pe1
1 · · · per

r is the prime factorization of n.

Exercise 2.23. Define σ(n) :=
∑

d|n d.

(a) Show that σ is a multiplicative function.

(b) Show that

σ(n) =
r∏

i=1

pei+1
i − 1
pi − 1

,

where n = pe1
1 · · · per

r is the prime factorization of n.

(c) Show that ∑
d|n

µ(d)σ(n/d) = n.

(d) Show that ∑
d|n

µ(d)σ(d) = (−1)rp1 · · · pr,

where n = pe1
1 · · · per

r is the prime factorization of n.
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Exercise 2.24. The Mangoldt function Λ(n) is defined for all positive
integers n by

Λ(n) :=
{

log p if n = pk, where p is prime and k is a positive integer;
0 otherwise.

(a) Show that ∑
d|n

Λ(d) = log n.

(b) Using part (a), show that

Λ(n) = −
∑
d|n

µ(d) log d.

Exercise 2.25. Show that if f is multiplicative, and if n = pe1
1 · · · per

r is the
prime factorization of n, then∑

d|n

(µ(d))2f(d) = (1 + f(p1)) · · · (1 + f(pr)).

Exercise 2.26. Show that n is square-free (see Exercise 1.13) if and only if∑
d|n(µ(d))2φ(d) = n.

Exercise 2.27. Show that for any arithmetic function f with f(1) 6= 0,
there is a unique arithmetic function g, called the Dirichlet inverse of f ,
such that f ? g = I. Also, show that if f(1) = 0, then f has no Dirichlet
inverse.

Exercise 2.28. Show that if f is a multiplicative function, then so is its
Dirichlet inverse (as defined in the previous exercise).


